O.P.Code: 20EE0204

expression for induced EMF.

R20

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular & Supplementary Examinations December-2023 ELECTROMAGNETIC FIELDS

	ELECTROMAGNETIC FIELDS			
	(Electrical and Electronics Engineering)			
Time: 3 Hours		Max.	Mark	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			
1	a Find the distance from A (r=4, θ =20° & ϕ =120°) B ((r=2, θ =80° &	CO1	L3	6 M
	φ=30°)			
	b Transfer the cartesian Co-ordinates X=2, Y=1, Z=3 into spherical co-ordinates systems.	CO1	L3	6M
	OR			
2	Find the gradient of the following scalar fields:	CO ₁	L3	12M
	i) $V = e^{-z} \sin 2x \cosh y$, ii) $U = r^2 z \cos \phi$ and iii) $W = 10r \sin^2 \theta \cos \phi$ UNIT-II			
3	a Find E at (0,0,2) m due to charged circular disc in x-y plane with ρ_s =20 n C/m ² and radius 1m.	CO2	L3	6M
	b A circular disc of 10 cm radius is charged uniformly with total charge of	CO ₂	L3	6M
	100μc. Find E at a point 20cm on its axis.			
	OR			
4	Find V at P (2,1,3) for the field of two coaxial conducting cones, with V=50 V at θ =30 and V=20 V at θ =50.	CO2	L3	12M
	UNIT-III			
5	a Derive the expression for parallel plate capacitor and capacitance of a co-axial cable?	CO3	L3	6M
	b A parallel plate capacitor has an area of 0.8 m ² separation of 0.1 mm with a dielectric for which $\varepsilon_r = 1000$ and a field of 10^6 V/m. Calculate C	CO3	L3	6M
	and V			
	OR	CO2	т 2	(N #
6	a Determine whether or not the following potential fields satisfy the Laplace's equation $V=x^2-y^2+z^2$ ⅈ) $V=r\cos\phi+z$	CO3	L3	6M
	b Derive Laplace's and Poisson's Equation. UNIT-IV	CO3	L3	6M
7	Calculate the inductance of a 10 m length of coaxial cable filled with a	CO ₄	L3	12M
	material for which $\mu_r = 80$ and radii inner and outer conductors are 1 mm			
	and 4 mm respectively.			
	OR			
8	In cylindrical co-ordinates A=50 r ² a _z wb/m is a vector magnetic potential	CO4	L4	12M
	in a certain region of free space. Find H, B, J and using J find the total			
	current I crossing the surface $0 < r < 1$, $0 < \phi < 2\pi$ and $Z = 0$.			
	UNIT-V	~~-		
9	Write Maxwell's equation in good conductors for time varying fields and	CO5	L4	12M
	static fields both in differential and integral form.			
10	OR Evaluin faradays law of electromagnetic induction and derive the	COS	T A	127/
TA	Explain faradays law of electromagnetic induction and derive the	CO ₅	L4	12M

*** END ***

